Аватар
Алгебра, опубликовано 2018-08-22 23:18:02 by Гость

На столе лежат 2001 монета. Двое играют в следующую игру: ходят по очереди: за ход первый может взять со стола любое нечётное число монет от 1 до 99, второй - любое чётное число монет от 2 до 100. Проигрывает тот, кто не сможет сделать ход. Кто выйграет при правильной игре???

Аватар
Ответ оставил Гость

Выиграет первый игрок.

Своим ходом он берёт 81 монету, оставляя 1920=102+101*18. После этого второй игрок берёт k монет, а первый возьмёт 101-k, оставив 102+101*17 на столе. И так далее, в конце концов после хода первого игрока на столе останется 102 монеты. После хода второго игрока останется от 2 до 100 монет, первый игрок возьмёт все, кроме одной, и второй не сможет сделать ход.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.