Алгебра, опубликовано 2018-08-22 22:49:09 by Гость
Докажите, что при любом натуральном n: а) если n^2-1 четно, то n^2-1 делится на 8; б) если n^3-4n четно, то n^3-4n делится на 48
Ответ оставил Гость
1)разложим (n-1)(n+1) - четно, то это произведение двух четных или нечного на четное, т.е. для всех n не кратных 2 мы получим умножение двух четных чисел причем одно из них делится на 4, а другое на 2, что вместе дает 8
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.
Форма вопроса доступна на