Алгебра, опубликовано 2018-08-22 23:06:17 by Гость

Решить уравнение 2sin(x/2-п/6)=-1

Ответ оставил Гость

Sin(П/6 + х/2) cos(П/6 - х/2) >= 0
1/2 * (sin((П/6 + х/2)+(П/6 - х/2)) + sin((П/6 + х/2)-(П/6 - х/2))) >= 0
1/2 * (sin(П/3) + sin(x)) >= 0
(1/2) * (√3)/2 + (1/2)*sin(x) >= 0
(√3)/4+(1/2)*sin(x) >= 0
(1/2)*sin(x) >=- (√3)/4
sin(x) >=- (√3)/2
-П/3 + 2пk ≤ X ≤ 4П/3 + 2пk, kЄZ
Ответ: XЄ[-П/3 + 2пk; 4П/3 + 2пk], kЄZ.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.