Алгебра, опубликовано 2018-08-22 23:11:00 by Гость

найдите наименьшее значение функции y=5^(x^2+12x+38)

Ответ оставил Гость

5^f(x) - монотонно возрастающая функция (относительно f(x)), минимум там же, где и у f(x)

x^2+12x+38=(x^2+12x+36)+2=(x+6)^2+2 - минимум в -6, равен 2.

Тогда у 5^(x^2+12x+38) минимум при x = -6;    равен 5^2 = 25.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.