Алгебра, опубликовано 2018-08-22 23:33:18 by Гость

Решить уравнение в целых числах x^3-x=3y^2+1

Ответ оставил Гость

Запишем уравнение в виде 
x^3 - x - 1 = 3y^2

Для начала посмотрим на остатки от деления на 3. Правая часть делится на 3, тогда и левая часть делится на 3.
1) Если x = 3k, левая часть даёт остаток 0 - 0 - 1 = -1 ~ 2 при делении на 3, так что таких целых корней у уравнения нет.
2) Если x = 3k - 1, остаток левой части равен: -1 + 1 - 1 = -1 ~ 2, опять левая часть не делится на 3.
3) Если x = 3k + 1, остаток левой части равен: 1 - 1 - 1 = -1 ~ 2, снова не делится.

Получили, что при любом значении x левая часть на 3 не делится, а правая делится. Тогда целочисленных решений у данного уравнения нет.

Остатки можно было бы не находить перебором, а заметить, что x^3 - x = (x - 1) x (x + 1) делится на 3.

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Алгебра.

Форма вопроса доступна на полной версии этой страницы.