Геометрия, опубликовано 2018-08-22 21:28:24 by Гость
Докажите,что сумма медиан треугольника меньше его периметра
Ответ оставил Гость
Если есть стороны a b и медиана m1 к третьей стороне c, то можно ДОСТРОИТЬ этот треугольник до параллелограмма, если продолжить медиану на свою длину (за точку пересечения со стороной c), и соединить полученную точку с концами a и b.
В этом параллелограмме диагонали с и 2*m1, а стороны a и b.
Теперь очевидно, что a + b > 2*m1;
Точно так же показывается b + c > 2*m2; a + c > 2*m3;
Если сложить левые и правые части этих неравенств, получается требуемое неравенство (a + b + c) > (m1 + m2 + m3);
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на