Геометрия, опубликовано 2018-08-22 22:07:26 by Гость

Стороны параллелограмма равны 4 м и 6м,а один из его углов в два раза меньше другого. Найдите площадь его параллелограмма. (По рабочей тетради 9 класс. Л.С. Атанасян)

Ответ оставил Гость

Площадь параллелограмма равна a*b*Sinα = a*b*Sinβ. У нас β = 2*α.
Sin2α = 2*Sinα*Cosα, значит  Sinα = 2*Sinα*Cosα. Отсюда  Cosα = 0,5. Значит α=60°. Sin60° = 0,866. Итак, площадь этого параллелограмма равна 6*4*0,866=20,784м².

Или: Сумма четырех углов параллелограмма равна 360°. Площадь параллелограмма равна 6*4*Sin60° = 6*4*0,866=20,784м².




















Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.