Геометрия, опубликовано 2018-08-22 22:11:16 by Гость

Высоты остроугольного треугольника ABC, проведенные из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC

Ответ оставил Гость

Тк  треугольник  ABC  вписан в окружность,то углы  BB1С и BAC равны  как углы вписанные  в 1  окружность и опирающиеся на 1 дугу. тк отрезок B1С1 проходит  через центр окружности,то B1C1-диаметр,тогда угол  B1BC1 прямой тк опирается на диаметр.Если обозначить L и N основания высот,а E точка  пересечения высот. ТО угол  BEL=90-BB1C  угол  NBA=90-BEL=BB1С,откуда BAC=NBA=BB1C=x
тогда  из прямоугольного  треугольника BNA: 2x=90 x=45
Ответ:45 ==

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.