Геометрия, опубликовано 2018-08-22 22:23:37 by Гость
Несколько задачек :3 Диагонали трапеции ABCD пересекаются в точке О. Площади ∆ВОС и ∆AOD относятся как 9÷1, сумма оснований ВС и AD = 4,8 см. Найдите основания трапеции. Иииии вторая : Отрезки АВ и CD пересекаются в точке О. АВ÷OB=DO÷OC. Доказать, что угол CBO= углу DAO.
Ответ оставил Гость
1. S BOC = 1/2 BC * h1. S AOD = 1/2 AD *h2. h1=h2 , т. к. в трапеции перпендикуляры, опущенные на основания из точки пересечения диагоналей, равны. S BOC / S AOD = 9 / 1.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на