Геометрия, опубликовано 2018-08-22 22:25:51 by Гость
Биссектриса внешнего угла треугольника параллельна стороне треугольника. Докажите,что треугольник равнобедренный.
Ответ оставил Гость
Допустим, внутренний угол треугольника "a"
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т.е. половинки угла = (180-а)/2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т.к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на