Геометрия, опубликовано 2018-08-22 22:42:55 by Гость

В окружность вписан четырехугольник, длины сторон которого равны a,b,c,d. Найти отношение длин диагоналей этого четырехугольника.

Ответ оставил Гость

В                С

А                     Д       АВ=а, ВС=в   СД=c, AD=d, AC=D1   BD=D2
Находим площадь четырехуг-ка по сумме площадей треугольников, которые вписаны в окружность и их площадь равна произведению сторон/4R
Sabcd=Sabc+Sadc= D1*a*b/4R+D1*c*d/4R=D1*(a*b+c*d)/4R
Sabcd=Sabd+Sbcd=D2*(a*d+b*c)/4R 
Приравниваем правые и левые части, сокращаем 4R и имеем: D1/D2=(a*d+b*c)/(a*b+c*d)

Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.

Форма вопроса доступна на полной версии этой страницы.