Геометрия, опубликовано 2018-08-22 22:46:44 by Гость
Диагональ прямоугольника равна 3 см и составляет с одной из сторон угол 30 градусов. Найдите площадь прямоугольника
Ответ оставил Гость
Диагональ прямоугольника делит его на два равных прямоугольных трегольника. Вычислим площадь одного из них. По условию, его гипотенуза равна 3, а один из острых углов равен 30 градусов. Найдём катеты треугольника. Известно, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы и равен 3/2. Второй катет найдём по теореме Пифагора - (3/2)²+x²=3², откуда x²=27/4, x=3√3/2. Если катеты треугольника равны 3/2 и 3√3/2, то его площадь равна 1/2*(3/2)*(3√3/2)=9√3/8. Площадь прямоугольника в 2 раза больше и равна 9√3/4.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на