Геометрия, опубликовано 2018-08-22 23:45:15 by Гость
Биссектрисы проведенные из двух противоположных углов прямоугольника отсекли от него ромб со стороной √2 определите периметр прямоугольника с рисунком надо помогите
Ответ оставил Гость
Пусть АВСД - прямоугольник. АК и СМ биссектрисы противолежащих углов (точка К лежит на ВС, М лежит на АД), делят прямые углы на 2 угла по 45 градусов.АКСМ - ромб, у которого все стороны равны АК=КС=СМ=АМ=√2.Прямоугольный треугольник СМД , в нем ∠СДМ=90, ∠ДСМ=∠СМД=45; углы при основании равны, значит треугольник еще и равнобедренный СД=МД. Пусть катеты СД = МД = х, тогда по теореме Пифагора СМ²=СД²+МД²=2х², (√2)²=2х², х=1.Тогда АД = АМ + МД = √2+1.Итак, стороны прямоугольника: АД =√2+1 и СД =1.Периметр: Р = 2*(1+(√2+1)) =2√2+4.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на