Геометрия, опубликовано 2018-08-22 21:18:52 by Гость
Из центра О вписанной в треугольник окружности к плоскости этого треугольника проведен перпендикуляр OS длиной 2√5см. Найдите площадь треугольника ASC если АВ = 14, АС = 15, ВС = 13.
Ответ оставил Гость
треугольник АВС, О-центр вписанной окружности, OS=2*корень5, полупериметр (р)АВС=(14+15+13)/2=21, площадьАВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(21*7*6*8)=84, радиус вписанной=площадь/полупериметр=84/21=4, проводим радиус ОН перпендикулярный в точку касания на АС, проводим SН, треугольник SОН прямоугольный, SН=корень(SО в квадрате+ОН в квадрате)=корень(20+16)=6,, SН перпендикулярна АС (согласно теореме о трех перпендикулярах),
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
