Геометрия, опубликовано 2018-08-22 21:53:36 by Гость
Знайти висоту рівнобедреного трикутника основа якого 10 см, бічна сторона 13 см.
Ответ оставил Гость
Высота равнобедренного треугольника проведенная из его вершины найдем из прямоугольного треугольника с катетом = 5 (половина основания) и гипотенузой = 13 (боковая сторона), получаем h^2 = 169 - 25 =144, h=12.
Высоту равнобедренного треугольника проведенная к боковой стороне найдем из двух прямоугольных треугольников на которые она его делит. В первом треугольнике гипотенуза равна 13(боковая сторона), а катет обозначим х, во втором треугольнике гипотенуза равна 10 (основание) и катет равен (13-х).
По теореме Пифагора h^2=169-x^2 = 100 - (13-х)^2. 26x=238, x=9 целых 2/13.
h^2=169-(9 целых 2/13)^2, h=120/13=9 3/13.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
