Геометрия, опубликовано 2018-08-22 22:00:00 by Гость
В основании пирамиды лежит прямоугольник со сторонами 6 см и 8 см. Все боковые рёбра равны 13 см. Найдите объём пирамиды.
Ответ оставил Гость
V пирамиды = 1/3 * H * S основания
S основания = S площади прямоугольника = 6*8 = 48.
Проводим диагональ d в основании пирамиды. Получаем прямоугольный треугольник. По теореме Пифагора находим диагональ:
d^2 = 6^2 + 8^2
d^2 =36+64
d^2=100
d =10
Высота пирамиды и половина этой диагональ образуют другой прямоугольный треугольник, в котором высота есть катетом.Ребро пирамиды - гипотенуза. Тогда из теоремы Пифагора высота равна:
h^2 = 13^2 - 5^2
h^2= 169 - 25
h^2 = 144
h = 12
V пирамиды = 1/3 * 12* 48 = 192 .
Ответ: 192
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
