Аватар
Геометрия, опубликовано 2018-08-22 22:21:26 by Гость

В трапеции основания равны 12 и 24. а боковые ребра равны 10. В каждый из углов трапеции вписана окружность радиуса 1. Найдите площадь четырехугольника, вершинами которого являются центры этих окружностей

Аватар
Ответ оставил Гость

Центры вписанных в углы данной равнобокой трапеции равноудалены от сторон данной трапеции на 1 (радиус). соединив центры, мы имеем меньшую трапецию, стороны которой параллельны сторонам данной нам трапеции, то есть имеем подобные трапеции.  Найдем высоту данной нам трапеции. Половина азности оснований (24-12):2 =6 - это катет бокового треугольника в трапеции, гипотенуза равна 10. Значит высота равна √(100-36)=8.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.