Геометрия, опубликовано 2018-08-22 23:01:09 by Гость
В равнобедренном треугольнике abc с основанием ac = 2 вписана окружность, которая точкой касания делит боковые стороны в отношении 2:3. Найдите периметр треугольника, если угол B меньше 60 градусовПожалуйста, с подробным решением
Ответ оставил Гость
Треугольник АВС, АВ=ВС, точки касания вписанной окружности боковых сторон: М на стороне АВ (ВМ/МА=2/3), Е на стороне ВС (ВЕ/ЕС=2/3), К на стороне АС. Пусть ВМ=х, тогда МА=3ВМ/2=3х/2.По свойству касательных: ВМ=ВЕ=х, МА=АК=3х/2, ЕС=КС=3х/2. Т.к. АС=АК+КС=3х/2+3х/2=3х, 2=3х, х=2/3. Значит боковая сторона АВ=ВМ+МА=2/3+1=5/3. Периметр треугольника Р=5/3+5/3+2=16/3=5 1/3Правильный ответ: 5 1/3.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
