Аватар
Геометрия, опубликовано 2018-08-22 23:16:17 by Гость

Помогите пожалуйста! На отрезке, соединяющем середины оснований АD и DC трапеции ABCD, взята точка М. Докажите, что треугольники AMB и CMD равновелики

Аватар
Ответ оставил Гость

Точка Е - середина основания ВС, точка К - середина оскования АД. Значит на отрезке ЕК лежит точка М. 
Для начала рассмотрим две трапеции, на которые отрезок ЕК поделил трапецию АВСД.
Трапеции АВЕК и КЕСД равновеликие, поскольку у них равны верхние и нижние основания и высота (так как Е и К середины оснований).
Известно, что медиана делит треугольник на два равновеликие треугольника. 
ОК - медиана треуг. АМД, ОЕ - медиана треуг. ВМС. 
Треуг. АМК и ДМК равновеликие. 
Треуг. ВМЕ и СМЕ также равновеликие.
Получается, что если от трапеций АВЕК и КЕСД отнять равновеликие треуг. АМК, ВМЕ и ДМК, СМЕ, то в результате останутся два равновеликие треуг. АМВ и СМД.
Доказано.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.