Аватар
Геометрия, опубликовано 2018-08-22 23:42:53 by Гость

В трапеции ABCD диагональ BD перпендикулярна боковой стороне AB, угол ADB= углу BDC = 30 градусов. Найти AD, если периметр трапеции равен 60см.

Аватар
Ответ оставил Гость

Из прямоугольного ΔАВД найдем ∠ВАД=180-∠АВД-∠АДВ=180-90-30=60. Также найдем АВ=АД*cos60=АД/2. Из условия ∠АДВ=∠ВДС=30, значит ∠АДС=60. Получается , что углы при нижнем основании равны, значит трапеция равнобокая (АВ=СД). Также диагональ ВД - биссектриса ∠АДС. Т.к. биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне, значит ВС=СД. Итого АВ=ВС=СД=AД/2. Периметр трапеции Р=3АВ+АД=3АД/2+АД=5АД/2, откуда АД=2Р/5=2*60/5=24

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.